Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
J Virol ; 96(5): e0088921, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: covidwho-2223570

RESUMO

Porcine epidemic diarrhea virus (PEDV) causes a porcine disease associated with swine epidemic diarrhea. Different antagonistic strategies have been identified, and the mechanism by which PEDV infection impairs the production of interferon (IFN) and delays the activation of the IFN response to escape host innate immunity has been determined, but the pathogenic mechanisms of PEDV infection remain enigmatic. Our preliminary results revealed that endogenous F-box and WD repeat domain-containing 7 (FBXW7) protein, the substrate recognition component of the SCF-type E3 ubiquitin ligase, is downregulated in PEDV-infected Vero E6 cells, according to the results from an isobaric tags for relative and absolute quantification (iTRAQ) analysis. Overexpression of FBXW7 in target cells makes them more resistant to PEDV infection, whereas ablation of FBXW7 expression by small interfering RNA (siRNA) significantly promotes PEDV infection. In addition, FBXW7 was verified as an innate antiviral factor capable of enhancing the expression of RIG-I and TBK1, and it was found to induce interferon-stimulated genes (ISGs), which led to an elevated antiviral state of the host cells. Moreover, we revealed that PEDV nonstructural protein 2 (nsp2) interacts with FBXW7 and targets FBXW7 for degradation through the K48-linked ubiquitin-proteasome pathway. Consistent with the results proven in vitro, FBXW7 reduction was also confirmed in different intestinal tissues from PEDV-infected specific-pathogen-free (SPF) pigs. Taken together, the data indicated that PEDV has evolved with a distinct antagonistic strategy to circumvent the host antiviral response by targeting the ubiquitin-proteasome-mediated degradation of FBXW7. Our findings provide novel insights into PEDV infection and pathogenesis. IMPORTANCE To counteract the host antiviral defenses, most viruses, including coronaviruses, have evolved with diverse strategies to dampen host IFN-mediated antiviral response, by interfering with or evading specific host regulators at multiple steps of this response. In this study, a novel antagonistic strategy was revealed showing that PEDV infection could circumvent the host innate response by targeted degradation of endogenous FBXW7 in target cells, a process that was verified to be a positive modulator for the host innate immune system. Degradation of FBXW7 hampers host innate antiviral activation and facilitates PEDV replication. Our findings reveal a new mechanism exploited by PEDV to suppress the host antiviral response.


Assuntos
Infecções por Coronavirus/veterinária , Proteína 7 com Repetições F-Box-WD/metabolismo , Evasão da Resposta Imune , Imunidade Inata , Vírus da Diarreia Epidêmica Suína/imunologia , Doenças dos Suínos/imunologia , Animais , Antivirais/imunologia , Chlorocebus aethiops , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/virologia , Interferon Tipo I/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Transdução de Sinais/imunologia , Suínos , Doenças dos Suínos/prevenção & controle , Doenças dos Suínos/virologia , Ubiquitinas/metabolismo , Células Vero
3.
J Clin Immunol ; 42(2): 232-239, 2022 02.
Artigo em Inglês | MEDLINE | ID: covidwho-1838372

RESUMO

PURPOSE: To study the effect of interferon-α2 auto-antibodies (IFN-α2 Abs) on clinical and virological outcomes in critically ill COVID-19 patients and the risk of IFN-α2 Abs transfer during convalescent plasma treatment. METHODS: Sera from healthy controls, cases of COVID-19, and other respiratory illness were tested for IFN-α2 Abs by ELISA and a pseudo virus-based neutralization assay. The effects of disease severity, sex, and age on the risk of having neutralizing IFN-α2 Abs were determined. Longitudinal analyses were performed to determine association between IFN-α2 Abs and survival and viral load and whether serum IFN-α2 Abs appeared after convalescent plasma transfusion. RESULTS: IFN-α2 neutralizing sera were found only in COVID-19 patients, with proportions increasing with disease severity and age. In the acute stage of COVID-19, all sera from patients with ELISA-detected IFN-α2 Abs (13/164, 7.9%) neutralized levels of IFN-α2 exceeding physiological concentrations found in human plasma and this was associated with delayed viral clearance. Convalescent plasma donors that were anti-IFN-α2 ELISA positive (3/118, 2.5%) did not neutralize the same levels of IFN-α2. Neutralizing serum IFN-α2 Abs were associated with delayed viral clearance from the respiratory tract. CONCLUSIONS: IFN-α2 Abs were detected by ELISA and neutralization assay in COVID-19 patients, but not in ICU patients with other respiratory illnesses. The presence of neutralizing IFN-α2 Abs in critically ill COVID-19 is associated with delayed viral clearance. IFN-α2 Abs in COVID-19 convalescent plasma donors were not neutralizing in the conditions tested.


Assuntos
Autoanticorpos/imunologia , COVID-19/imunologia , COVID-19/terapia , Interferon alfa-2/imunologia , Plasma/imunologia , Adulto , Idoso , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Antivirais/imunologia , Transfusão de Componentes Sanguíneos/métodos , Estado Terminal , Feminino , Humanos , Imunização Passiva/métodos , Imunoglobulina G/imunologia , Masculino , Pessoa de Meia-Idade , SARS-CoV-2/imunologia , Soroterapia para COVID-19
4.
Oxid Med Cell Longev ; 2022: 5589089, 2022.
Artigo em Inglês | MEDLINE | ID: covidwho-1736165

RESUMO

The COVID-19 pandemic caused relatively high mortality in patients, especially in those with concomitant diseases (i.e., diabetes, hypertension, and chronic obstructive pulmonary disease (COPD)). In most of aforementioned comorbidities, the oxidative stress appears to be an important player in their pathogenesis. The direct cause of death in critically ill patients with COVID-19 is still far from being elucidated. Although some preliminary data suggests that the lung vasculature injury and the loss of the functioning part of pulmonary alveolar population are crucial, the precise mechanism is still unclear. On the other hand, at least two classes of medications used with some clinical benefits in COVID-19 treatment seem to have a major influence on ROS (reactive oxygen species) and RNS (reactive nitrogen species) production. However, oxidative stress is one of the important mechanisms in the antiviral immune response and innate immunity. Therefore, it would be of interest to summarize the data regarding the oxidative stress in severe COVID-19. In this review, we discuss the role of oxidative and antioxidant mechanisms in severe COVID-19 based on available studies. We also present the role of ROS and RNS in other viral infections in humans and in animal models. Although reactive oxygen and nitrogen species play an important role in the innate antiviral immune response, in some situations, they might have a deleterious effect, e.g., in some coronaviral infections. The understanding of the redox mechanisms in severe COVID-19 disease may have an impact on its treatment.


Assuntos
COVID-19/imunologia , Estresse Oxidativo/imunologia , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Antivirais/imunologia , Antivirais/farmacologia , Antivirais/uso terapêutico , COVID-19/metabolismo , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/metabolismo , Humanos , Imunidade Inata , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Nitrogênio/imunologia , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/imunologia , Espécies Reativas de Oxigênio/metabolismo , SARS-CoV-2/patogenicidade , Tratamento Farmacológico da COVID-19
5.
Mol Cell Biochem ; 477(3): 711-726, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: covidwho-1616202

RESUMO

The novel coronavirus pandemic has emerged as one of the significant medical-health challenges of the current century. The World Health Organization has named this new virus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Since the first detection of SARS-CoV-2 in November 2019 in Wuhan, China, physicians, researchers, and others have made it their top priority to find drugs and cures that can effectively treat patients and reduce mortality rates. The symptoms of Coronavirus Disease 2019 (COVID-19) include fever, dry cough, body aches, and anosmia. Various therapeutic compounds have been investigated and applied to mitigate the symptoms in COVID-19 patients and cure the disease. Degenerative virus analyses of the infection incidence and COVID-19 have demonstrated that SARS-CoV-2 penetrates the pulmonary alveoli's endothelial cells through Angiotensin-Converting Enzyme 2 (ACE2) receptors on the membrane, stimulates various signaling pathways and causes excessive secretion of cytokines. The continuous triggering of the innate and acquired immune system, as well as the overproduction of pro-inflammatory factors, cause a severe condition in the COVID-19 patients, which is called "cytokine storm". It can lead to acute respiratory distress syndrome (ARDS) in critical patients. Severe and critical COVID-19 cases demand oxygen therapy and mechanical ventilator support. Various drugs, including immunomodulatory and immunosuppressive agents (e.g., monoclonal antibodies (mAbs) and interleukin antagonists) have been utilized in clinical trials. However, the studies and clinical trials have documented diverging findings, which seem to be due to the differences in these drugs' possible mechanisms of action. These drugs' mechanism of action generally includes suppressing or modulating the immune system, preventing the development of cytokine storm via various signaling pathways, and enhancing the blood vessels' diameter in the lungs. In this review article, multiple medications from different drug families are discussed, and their possible mechanisms of action are also described.


Assuntos
Antivirais/imunologia , Tratamento Farmacológico da COVID-19 , Agentes de Imunomodulação/farmacologia , Anticorpos Monoclonais Humanizados/imunologia , Anticorpos Monoclonais Humanizados/farmacologia , Antivirais/farmacologia , Azetidinas/imunologia , Azetidinas/farmacologia , COVID-19/etiologia , Dexametasona/imunologia , Dexametasona/farmacologia , Famotidina/imunologia , Famotidina/farmacologia , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/imunologia , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Infliximab/imunologia , Infliximab/farmacologia , Proteína Antagonista do Receptor de Interleucina 1/imunologia , Proteína Antagonista do Receptor de Interleucina 1/farmacologia , Melatonina/imunologia , Melatonina/farmacologia , Purinas/imunologia , Purinas/farmacologia , Pirazóis/imunologia , Pirazóis/farmacologia , Sulfonamidas/imunologia , Sulfonamidas/farmacologia
6.
Nat Commun ; 12(1): 7092, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: covidwho-1561304

RESUMO

The nasal epithelium is a plausible entry point for SARS-CoV-2, a site of pathogenesis and transmission, and may initiate the host response to SARS-CoV-2. Antiviral interferon (IFN) responses are critical to outcome of SARS-CoV-2. Yet little is known about the interaction between SARS-CoV-2 and innate immunity in this tissue. Here we apply single-cell RNA sequencing and proteomics to a primary cell model of human nasal epithelium differentiated at air-liquid interface. SARS-CoV-2 demonstrates widespread tropism for nasal epithelial cell types. The host response is dominated by type I and III IFNs and interferon-stimulated gene products. This response is notably delayed in onset relative to viral gene expression and compared to other respiratory viruses. Nevertheless, once established, the paracrine IFN response begins to impact on SARS-CoV-2 replication. When provided prior to infection, recombinant IFNß or IFNλ1 induces an efficient antiviral state that potently restricts SARS-CoV-2 viral replication, preserving epithelial barrier integrity. These data imply that the IFN-I/III response to SARS-CoV-2 initiates in the nasal airway and suggest nasal delivery of recombinant IFNs to be a potential chemoprophylactic strategy.


Assuntos
Células Epiteliais/virologia , Interferon Tipo I/imunologia , Interferons/imunologia , Mucosa Nasal/virologia , SARS-CoV-2/fisiologia , Antivirais/imunologia , Antivirais/farmacologia , COVID-19/imunologia , COVID-19/virologia , Células Cultivadas , Células Epiteliais/citologia , Células Epiteliais/imunologia , Humanos , Imunidade Inata , Cinética , Mucosa Nasal/citologia , Mucosa Nasal/imunologia , SARS-CoV-2/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Tropismo Viral , Replicação Viral/efeitos dos fármacos , Interferon lambda
7.
Clin Immunol ; 233: 108888, 2021 12.
Artigo em Inglês | MEDLINE | ID: covidwho-1517099

RESUMO

Human interferon alpha (hIFN-α) administration constitutes the current FDA approved therapy for chronic Hepatitis B and C virus infections. Additionally, hIFN-α treatment efficacy was recently demonstrated in patients with COVID-19. Thus, hIFN-α constitutes a therapeutic alternative for those countries where vaccination is inaccessible and for people who did not respond effectively to vaccination. However, hIFN-α2b exhibits a short plasma half-life resulting in the occurrence of severe side effects. To optimize the cytokine's pharmacokinetic profile, we developed a hyperglycosylated IFN, referred to as GMOP-IFN. Given the significant number of reports showing neutralizing antibodies (NAb) formation after hIFN-α administration, here we applied the DeFT (De-immunization of Functional Therapeutics) approach to develop functional, de-immunized versions of GMOP-IFN. Two GMOP-IFN variants exhibited significantly reduced ex vivo immunogenicity and null antiproliferative activity, while preserving antiviral function. The results obtained in this work indicate that the new de-immunized GMOP-IFN variants constitute promising candidates for antiviral therapy.


Assuntos
Hepatite B Crônica/imunologia , Hepatite C Crônica/imunologia , Interferon-alfa/imunologia , Proteínas Recombinantes/imunologia , Adulto , Sequência de Aminoácidos , Animais , Anticorpos Neutralizantes/imunologia , Antivirais/imunologia , Antivirais/farmacologia , Células CHO , COVID-19/imunologia , COVID-19/virologia , Bovinos , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Cricetinae , Cricetulus , Estabilidade de Medicamentos , Células HEK293 , Hepatite B Crônica/tratamento farmacológico , Hepatite B Crônica/virologia , Hepatite C Crônica/tratamento farmacológico , Hepatite C Crônica/virologia , Humanos , Interferon-alfa/genética , Interferon-alfa/farmacologia , Proteínas Recombinantes/farmacologia , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/imunologia , SARS-CoV-2/fisiologia , Tratamento Farmacológico da COVID-19
8.
Biosci Rep ; 41(10)2021 10 29.
Artigo em Inglês | MEDLINE | ID: covidwho-1510636

RESUMO

Coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus has become a global health emergency. Although new vaccines have been generated and being implicated, discovery and application of novel preventive and control measures are warranted. We aimed to identify compounds that may possess the potential to either block the entry of virus to host cells or attenuate its replication upon infection. Using host cell surface receptor expression (angiotensin-converting enzyme 2 (ACE2) and Transmembrane protease serine 2 (TMPRSS2)) analysis as an assay, we earlier screened several synthetic and natural compounds and identified candidates that showed ability to down-regulate their expression. Here, we report experimental and computational analyses of two small molecules, Mortaparib and MortaparibPlus that were initially identified as dual novel inhibitors of mortalin and PARP-1, for their activity against SARS-CoV-2. In silico analyses showed that MortaparibPlus, but not Mortaparib, stably binds into the catalytic pocket of TMPRSS2. In vitro analysis of control and treated cells revealed that MortaparibPlus caused down-regulation of ACE2 and TMPRSS2; Mortaparib did not show any effect. Furthermore, computational analysis on SARS-CoV-2 main protease (Mpro) that also predicted the inhibitory activity of MortaparibPlus. However, cell-based antiviral drug screening assay showed 30-60% viral inhibition in cells treated with non-toxic doses of either MortaparibPlus or Mortaparib. The data suggest that these two closely related compounds possess multimodal anti-COVID-19 activities. Whereas MortaparibPlus works through direct interactions/effects on the host cell surface receptors (ACE2 and TMPRSS2) and the virus protein (Mpro), Mortaparib involves independent mechanisms, elucidation of which warrants further studies.


Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Biologia Computacional/métodos , Enzima de Conversão de Angiotensina 2/imunologia , Enzima de Conversão de Angiotensina 2/metabolismo , Antivirais/imunologia , COVID-19/imunologia , Linhagem Celular Tumoral , Avaliação Pré-Clínica de Medicamentos/métodos , Proteínas de Choque Térmico HSP70/antagonistas & inibidores , Humanos , Proteínas Mitocondriais/antagonistas & inibidores , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , SARS-CoV-2/imunologia , Serina Endopeptidases/imunologia , Serina Endopeptidases/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Internalização do Vírus/efeitos dos fármacos
9.
Eur J Immunol ; 51(7): 1641-1651, 2021 07.
Artigo em Inglês | MEDLINE | ID: covidwho-1473829

RESUMO

Emerging life-threatening viruses have posed great challenges to public health. It is now increasingly clear that epigenetics plays a role in shaping host-virus interactions and there is a great need for a more thorough understanding of these intricate interactions through the epigenetic lens, which may represent potential therapeutic opportunities in the clinic. In this review, we highlight the current understanding of the roles of key epigenetic regulators - chromatin remodeling and histone modification - in modulating chromatin openness during host defense against virus. We also discuss how the RNA modification m6A (N6-methyladenosine) affects fundamental aspects of host-virus interactions. We conclude with future directions for uncovering more detailed functions that epigenetic regulation exerts on both host cells and viruses during infection.


Assuntos
Antivirais/imunologia , Epigênese Genética/genética , Epigênese Genética/imunologia , Imunidade Inata/genética , Imunidade Inata/imunologia , Animais , Cromatina/genética , Cromatina/imunologia , Histonas/genética , Histonas/imunologia , Interações entre Hospedeiro e Microrganismos/genética , Interações entre Hospedeiro e Microrganismos/imunologia , Humanos , Processamento Pós-Transcricional do RNA/genética , Processamento Pós-Transcricional do RNA/imunologia
10.
Cell Chem Biol ; 29(1): 5-18.e6, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: covidwho-1471910

RESUMO

The global epidemic caused by the coronavirus severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has resulted in the infection of over 200 million people. To extend the knowledge of interactions between SARS-CoV-2 and humans, we systematically investigate the interactome of 29 viral proteins in human cells by using an antibody-based TurboID assay. In total, 1,388 high-confidence human proximal proteins with biotinylated sites are identified. Notably, we find that SARS-CoV-2 manipulates the antiviral and immune responses. We validate that the membrane protein ITGB1 associates angiotensin-converting enzyme 2 (ACE2) to mediate SARS-CoV-2 entry. Moreover, we reveal that SARS-CoV-2 proteins inhibit activation of the interferon pathway through the mitochondrial protein mitochondrial antiviral-signaling protein (MAVS) and the methyltransferase SET domain containing 2, histone lysine methyltransferase (SETD2). We propose 111 potential drugs for the clinical treatment of coronavirus disease 2019 (COVID-19) and identify three compounds that significantly inhibit the replication of SARS-CoV-2. The proximity labeling map of SARS-CoV-2 and humans provides a resource for elucidating the mechanisms of viral infection and developing drugs for COVID-19 treatment.


Assuntos
Anticorpos/imunologia , Antivirais/imunologia , SARS-CoV-2/imunologia , Enzima de Conversão de Angiotensina 2/imunologia , Antivirais/farmacologia , COVID-19/imunologia , Humanos , Integrina beta1/imunologia , Testes de Sensibilidade Microbiana , Tratamento Farmacológico da COVID-19
11.
Sci Rep ; 11(1): 20274, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: covidwho-1467137

RESUMO

The purpose of this work is to provide an in silico molecular rationale of the role eventually played by currently circulating mutations in the receptor binding domain of the SARS-CoV-2 spike protein (S-RBDCoV­2) in evading the immune surveillance effects elicited by the two Eli Lilly LY-CoV555/bamlanivimab and LY-CoV016/etesevimab monoclonal antibodies. The main findings from this study show that, compared to the wild-type SARS-CoV-2 spike protein, mutations E484A/G/K/Q/R/V, Q493K/L/R, S494A/P/R, L452R and F490S are predicted to be markedly resistant to neutralization by LY-CoV555, while mutations K417E/N/T, D420A/G/N, N460I/K/S/T, T415P, and Y489C/S are predicted to confer LY-CoV016 escaping advantage to the viral protein. A challenge of our global in silico results against relevant experimental data resulted in an overall 90% agreement. Thus, the results presented provide a molecular-based rationale for all relative experimental findings, constitute a fast and reliable tool for identifying and prioritizing all present and newly reported circulating spike SARS-CoV-2 variants with respect to antibody neutralization, and yield substantial structural information for the development of next-generation vaccines and monoclonal antibodies more resilient to viral evolution.


Assuntos
Anticorpos Monoclonais Humanizados/imunologia , Antivirais/imunologia , COVID-19/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Humanos , Ligação Proteica
12.
Biomed Pharmacother ; 144: 112247, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: covidwho-1446461

RESUMO

COVID-19 is a pneumonia-like disease with highly transmittable and pathogenic properties caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which infects both animals and humans. Although many efforts are currently underway to test possible therapies, there is no specific FDA approved drug against SARS-CoV-2 yet. miRNA-directed gene regulation controls the majority of biological processes. In addition, the development and progression of several human diseases are associated with dysregulation of miRNAs. In this regard, it has been shown that changes in miRNAs are linked to severity of COVID-19 especially in patients with respiratory diseases, diabetes, heart failure or kidney problems. Therefore, targeting these small noncoding-RNAs could potentially alleviate complications from COVID-19. Here, we will review the roles and importance of host and RNA virus encoded miRNAs in COVID-19 pathogenicity and immune response. Then, we focus on potential miRNA therapeutics in the patients who are at increased risk for severe disease.


Assuntos
Antivirais/administração & dosagem , COVID-19/terapia , Terapia Genética/métodos , MicroRNAs/administração & dosagem , Animais , Antivirais/imunologia , COVID-19/genética , COVID-19/imunologia , Sistemas de Liberação de Medicamentos/métodos , Humanos , MicroRNAs/genética , MicroRNAs/imunologia
13.
Signal Transduct Target Ther ; 6(1): 315, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: covidwho-1442755

RESUMO

The evolution of coronaviruses, such as SARS-CoV-2, makes broad-spectrum coronavirus preventional or therapeutical strategies highly sought after. Here we report a human angiotensin-converting enzyme 2 (ACE2)-targeting monoclonal antibody, 3E8, blocked the S1-subunits and pseudo-typed virus constructs from multiple coronaviruses including SARS-CoV-2, SARS-CoV-2 mutant variants (SARS-CoV-2-D614G, B.1.1.7, B.1.351, B.1.617.1, and P.1), SARS-CoV and HCoV-NL63, without markedly affecting the physiological activities of ACE2 or causing severe toxicity in ACE2 "knock-in" mice. 3E8 also blocked live SARS-CoV-2 infection in vitro and in a prophylactic mouse model of COVID-19. Cryo-EM and "alanine walk" studies revealed the key binding residues on ACE2 interacting with the CDR3 domain of 3E8 heavy chain. Although full evaluation of safety in non-human primates is necessary before clinical development of 3E8, we provided a potentially potent and "broad-spectrum" management strategy against all coronaviruses that utilize ACE2 as entry receptors and disclosed an anti-coronavirus epitope on human ACE2.


Assuntos
Enzima de Conversão de Angiotensina 2/antagonistas & inibidores , Anticorpos Monoclonais Murinos/farmacologia , Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , SARS-CoV-2/imunologia , Enzima de Conversão de Angiotensina 2/imunologia , Animais , Anticorpos Monoclonais Murinos/imunologia , Antivirais/imunologia , Chlorocebus aethiops , Modelos Animais de Doenças , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Células Vero
14.
Biomed Pharmacother ; 143: 112228, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: covidwho-1432983

RESUMO

Coronavirus disease 2019 (COVID-19), which is a respiratory illness associated with high mortality, has been classified as a pandemic. The major obstacles for the clinicians to contain the disease are limited information availability, difficulty in disease diagnosis, predicting disease prognosis, and lack of disease monitoring tools. Additionally, the lack of valid therapies has further contributed to the difficulties in containing the pandemic. Recent studies have reported that the dysregulation of the immune system leads to an ineffective antiviral response and promotes pathological immune response, which manifests as ARDS, myocarditis, and hepatitis. In this study, a novel platform has been described for disseminating information to physicians for the diagnosis and monitoring of patients with COVID-19. An adjuvant approach using compounds that can potentiate antiviral immune response and mitigate COVID-19-induced immune-mediated target organ damage has been presented. A prolonged beneficial effect is achieved by implementing algorithm-based individualized variability measures in the treatment regimen.


Assuntos
Antivirais/imunologia , Antivirais/uso terapêutico , Tratamento Farmacológico da COVID-19 , COVID-19/diagnóstico , Quimioterapia Adjuvante/métodos , Informática Médica/métodos , Algoritmos , COVID-19/imunologia , Gerenciamento Clínico , Progressão da Doença , Trato Gastrointestinal/imunologia , Humanos , Imunidade Celular , Imunidade Humoral , Índice de Gravidade de Doença
15.
Arch Immunol Ther Exp (Warsz) ; 69(1): 25, 2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: covidwho-1411512

RESUMO

The term host defense peptides arose at the beginning to refer to those peptides that are part of the host's immunity. Because of their broad antimicrobial capacity and immunomodulatory activity, nowadays, they emerge as a hope to combat resistant multi-drug microorganisms and emerging viruses, such as the case of coronaviruses. Since the beginning of this century, coronaviruses have been part of different outbreaks and a pandemic, and they will be surely part of the next pandemics, this review analyses whether these peptides and their derivatives are ready to be part of the treatment of the next coronavirus pandemic.


Assuntos
Peptídeos Catiônicos Antimicrobianos/uso terapêutico , Antivirais/uso terapêutico , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/epidemiologia , Pandemias , Anti-Inflamatórios/síntese química , Anti-Inflamatórios/imunologia , Anti-Inflamatórios/uso terapêutico , Peptídeos Catiônicos Antimicrobianos/síntese química , Peptídeos Catiônicos Antimicrobianos/imunologia , Antivirais/síntese química , Antivirais/imunologia , Ensaios Clínicos como Assunto , Coronavirus/efeitos dos fármacos , Coronavirus/fisiologia , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Humanos , Imunomodulação , Infecções Respiratórias/tratamento farmacológico , Infecções Respiratórias/epidemiologia , Infecções Respiratórias/imunologia , Infecções Respiratórias/virologia
17.
Int J Mol Sci ; 22(9)2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: covidwho-1359279

RESUMO

Deeply understanding the virus-host interaction is a prerequisite for developing effective anti-viral strategies. Traditionally, the transporter associated with antigen processing type 1 (TAP1) is critical for antigen presentation to regulate adaptive immunity. However, its role in controlling viral infections through modulating innate immune signaling is not yet fully understood. In the present study, we reported that TAP1, as a product of interferon-stimulated genes (ISGs), had broadly antiviral activity against various viruses such as herpes simplex virus 1 (HSV-1), adenoviruses (AdV), vesicular stomatitis virus (VSV), dengue virus (DENV), Zika virus (ZIKV), and influenza virus (PR8) etc. This antiviral activity by TAP1 was further confirmed by series of loss-of-function and gain-of-function experiments. Our further investigation revealed that TAP1 significantly promoted the interferon (IFN)-ß production through activating the TANK binding kinase-1 (TBK1) and the interferon regulatory factor 3 (IRF3) signaling transduction. Our work highlighted the broadly anti-viral function of TAP1 by modulating innate immunity, which is independent of its well-known function of antigen presentation. This study will provide insights into developing novel vaccination and immunotherapy strategies against emerging infectious diseases.


Assuntos
Membro 2 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/imunologia , Antivirais/imunologia , Interações entre Hospedeiro e Microrganismos/imunologia , Interferon Tipo I/biossíntese , Membro 2 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Membro 2 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/deficiência , Membro 2 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/genética , Animais , Técnicas de Inativação de Genes , Células HEK293 , Humanos , Imunidade Inata , Fator Regulador 3 de Interferon/imunologia , Camundongos , Modelos Imunológicos , Proteínas Serina-Treonina Quinases/imunologia , Células RAW 264.7 , Receptores Toll-Like/agonistas , Viroses/imunologia
18.
J Exp Med ; 218(10)2021 10 04.
Artigo em Inglês | MEDLINE | ID: covidwho-1345702

RESUMO

IFN-I and IFN-III immunity in the nasal mucosa is poorly characterized during SARS-CoV-2 infection. We analyze the nasal IFN-I/III signature, namely the expression of ISGF-3-dependent IFN-stimulated genes, in mildly symptomatic COVID-19 patients and show its correlation with serum IFN-α2 levels, which peak at symptom onset and return to baseline from day 10 onward. Moreover, the nasal IFN-I/III signature correlates with the nasopharyngeal viral load and is associated with the presence of infectious viruses. By contrast, we observe low nasal IFN-I/III scores despite high nasal viral loads in a subset of critically ill COVID-19 patients, which correlates with the presence of autoantibodies (auto-Abs) against IFN-I in both blood and nasopharyngeal mucosa. In addition, functional assays in a reconstituted human airway epithelium model of SARS-CoV-2 infection confirm the role of such auto-Abs in abrogating the antiviral effects of IFN-I, but not those of IFN-III. Thus, IFN-I auto-Abs may compromise not only systemic but also local antiviral IFN-I immunity at the early stages of SARS-CoV-2 infection.


Assuntos
Autoanticorpos/imunologia , COVID-19/imunologia , Interferon Tipo I/imunologia , SARS-CoV-2/imunologia , Adulto , Idoso , Animais , Antivirais/imunologia , Antivirais/farmacologia , Autoanticorpos/sangue , COVID-19/sangue , COVID-19/virologia , Chlorocebus aethiops , Feminino , Humanos , Interferon Tipo I/farmacologia , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Cavidade Nasal/imunologia , Cavidade Nasal/virologia , Estudos Prospectivos , SARS-CoV-2/fisiologia , Células Vero , Carga Viral/efeitos dos fármacos , Carga Viral/imunologia , Replicação Viral/efeitos dos fármacos , Replicação Viral/imunologia
19.
Cytokine ; 146: 155637, 2021 10.
Artigo em Inglês | MEDLINE | ID: covidwho-1333350

RESUMO

Interferons have prominent roles in various pathophysiological conditions, mostly related to inflammation. Interferon-gamma (IFNγ) was, initially discovered as a potent antiviral agent, over 50 years ago, and has recently garnered renewed interest as a promising factor involved in both innate and adaptive immunity. When new disease epidemics appear such as SARS-CoV (severe acute respiratory syndrome coronavirus), MERS-CoV (Middle East respiratory syndrome coronavirus), IAV (Influenza A virus), and in particular the current SARS-CoV-2 pandemic, it is especially timely to review the complexity of immune system responses to viral infections. Here we consider the controversial roles of effectors like IFNγ, discussing its actions in immunomodulation and immunotolerance. We explore the possibility that modulation of IFNγ could be used to influence the course of such infections. Importantly, not only could endogenous expression of IFNγ influence the outcome, there are existing IFNγ therapeutics that can readily be applied in the clinic. However, our understanding of the molecular mechanisms controlled by IFNγ suggests that the exact timing for application of IFNγ-based therapeutics could be crucial: it should be earlier to significantly reduce the viral load and thus decrease the overall severity of the disease.


Assuntos
Imunidade Adaptativa/imunologia , COVID-19/imunologia , Tolerância Imunológica/imunologia , Imunidade Inata/imunologia , Interferon gama/imunologia , Antivirais/imunologia , Antivirais/uso terapêutico , COVID-19/virologia , Humanos , Interferon gama/uso terapêutico , Receptores de Interferon/imunologia , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/imunologia , SARS-CoV-2/fisiologia , Transdução de Sinais/imunologia , Tratamento Farmacológico da COVID-19
20.
Inflammopharmacology ; 29(5): 1331-1346, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: covidwho-1333093

RESUMO

The pandemic coronavirus disease 2019 (COVID-19) is instigated by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that is mainly transmitted via the inhalation route and characterized by fever, coughing and shortness of breath. COVID-19 affects all age groups with no single cure. The drug discovery, manufacturing, and safety studies require extensive time and sources and, therefore, struggled to match the exponential spread of COVID-19. Yet, various repurposed drugs (antivirals, immune-modulators, nucleotide analogues), and convalescent plasma therapy have been authorized for emergency use against COVID-19 by Food and Drug Administration under certain limits and conditions. The discovery of vaccine is the biggest milestone achieved during the current pandemic era. About nine vaccines were developed for human use with varying claims of efficacy. The rapid emergence of mutations in SARS-CoV-2, suspected adverse drug reactions of current therapies in special population groups and limited availability of drugs in developing countries necessitate the development of more efficacious, safe and cheap drugs/vaccines for treatment and prevention of COVID-19. Keeping in view these limitations, the current review provides an update on the efficacy and safety of the repurposed, and natural drugs to treat COVID-19 as well as the vaccines used for its prophylaxis.


Assuntos
Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/uso terapêutico , COVID-19/imunologia , COVID-19/terapia , Reposicionamento de Medicamentos/tendências , Enzima de Conversão de Angiotensina 2/antagonistas & inibidores , Enzima de Conversão de Angiotensina 2/imunologia , Animais , Antivirais/imunologia , Antivirais/uso terapêutico , Produtos Biológicos/imunologia , Produtos Biológicos/uso terapêutico , COVID-19/epidemiologia , Reposicionamento de Medicamentos/métodos , Humanos , Imunização Passiva , Fatores Imunológicos/imunologia , Fatores Imunológicos/uso terapêutico , Soroterapia para COVID-19
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA